20x+1-x+5^2=-5-x^2-3x

Simple and best practice solution for 20x+1-x+5^2=-5-x^2-3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20x+1-x+5^2=-5-x^2-3x equation:



20x+1-x+5^2=-5-x^2-3x
We move all terms to the left:
20x+1-x+5^2-(-5-x^2-3x)=0
We add all the numbers together, and all the variables
-(-5-x^2-3x)+19x+26=0
We get rid of parentheses
x^2+3x+19x+5+26=0
We add all the numbers together, and all the variables
x^2+22x+31=0
a = 1; b = 22; c = +31;
Δ = b2-4ac
Δ = 222-4·1·31
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-6\sqrt{10}}{2*1}=\frac{-22-6\sqrt{10}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+6\sqrt{10}}{2*1}=\frac{-22+6\sqrt{10}}{2} $

See similar equations:

| (2x)²-64=0 | | 4x²-9x-100=0 | | 2/3×y=1/2 | | (3x-6)*8=9 | | x^2-x+0.8=0 | | (3x-6)^8=9 | | (2x)2-64=0 | | 8(5-h)=2(2h/ | | x+9x+4+2x=64 | | 3/32=x-15/16 | | -46.3/32=x-29.15/16 | | -463/32=x-2915/16 | | 2x+17/3=-15 | | 5(x2-7)=3(9-x2)+10 | | -463/32=x-2915/716 | | (X-1)2-(x-1)=0 | | 3x(x-5)-3x*2=-30 | | 6x-23=5 | | -2x2+x-7=0 | | X^2(2-x)^2=0.9 | | x+17/14=1-3/2x | | 7/8-(-2+3/4)=x | | 6x+9=9x+1 | | 8(3s+9)=192 | | 8n-20=3n+2 | | 7p+11=32 | | x+2/x-7=11/6 | | 10x=68-8+4x | | 11x-10=8x+5x+9 | | 5x+1-6x=500 | | 10n-101=6n-13 | | 12x-2-11x=14 |

Equations solver categories